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Spatial patterning often occurs in ecosystems as a result of a self-
organizing process caused by feedback between organisms and
the physical environment. Here, we show that the spatial pat-
terns observable in centuries-old Balinese rice terraces are also
created by feedback between farmers’ decisions and the ecology
of the paddies, which triggers a transition from local to global-
scale control of water shortages and rice pests. We propose an
evolutionary game, based on local farmers’ decisions that predicts
specific power laws in spatial patterning that are also seen in a
multispectral image analysis of Balinese rice terraces. The model
shows how feedbacks between human decisions and ecosystem
processes can evolve toward an optimal state in which total har-
vests are maximized and the system approaches Pareto optimal-
ity. It helps explain how multiscale cooperation from the commu-
nity to the watershed scale could persist for centuries, and why
the disruption of this self-organizing system by the Green Revolu-
tion caused chaos in irrigation and devastating losses from pests.
The model shows that adaptation in a coupled human–natural
system can trigger self-organized criticality (SOC). In previous
exogenously driven SOC models, adaptation plays no role, and no
optimization occurs. In contrast, adaptive SOC is a self-organizing
process where local adaptations drive the system toward local and
global optima.

self-organization | criticality | irrigation | evolutionary games |
Pareto optimality

The geometric precision of Balinese rice terraces has inspired
generations of postcard photographers. Viewed from above,

a changing mosaic of colors appears: green when the rice is
young, yellow as it nears harvest, silver when the paddies are
flooded, and brown when they are drained. These colors are
not uniform across the island, because Bali is an equatorial
island with only two seasons, wet and dry. Consequently, farm-
ers can plant their crops at any time, although they avoid har-
vesting in the rainy season. The colored patches that make up
the mosaics are visible in Google Earth. Like many natural phe-
nomena, patches show a characteristic power-law distribution
of sizes. However, in this case, the patches are created by the
farmer’s decisions about when to synchronize irrigation sched-
ules with their neighbors: Each patch displays the outcome of
these choices. Adjacent patches tend to be correlated. This cor-
relation weakens with distance, a relationship that also follows a
specific power law (Fig. 1). To discover why harvests approach
a maximum when both the size distribution of patches and the
corresponding correlation functions fit power-law distributions,
we need a model that relates the decisions of the farmers to the
consequences for irrigation flows and rice growth.

In Bali, water is regarded as a public good, the gift of the
Goddess of the Lakes. Rice is grown in paddy fields fed by irri-
gation systems dependent on rainfall. Rainfall varies by season
and, in combination with groundwater inflow, determines river
flow. By virtue of their location, upstream farmers can influence

how much water reaches their downstream neighbors. Across
the island, farmers recognize two management systems. In tulak
sumur (“reject the wellspring”), everyone is free to plant when-
ever they like, which gives upstream farmers an advantage over
their downstream neighbors. Alternatively, in kerta masa (“law-
ful/good timing”), farmers agree to adopt synchronized irrigation
schedules.

Kerta masa is sustained by local water-user groups called
subak, which have existed since the 11th century (1). Irrigation
schedules are chosen by consensus in subak meetings. In prior
research on a group of 10 subaks practicing kerta masa, we mea-
sured irrigation flows and found that they correlated perfectly
with the agreed-upon irrigation schedules (SI Appendix, Fig. S3).
Kerta masa tends to equalize rice harvests, and, in a typical sur-
vey, 39 of 40 farmers agreed that their harvests are about the
same as those of their neighbors (SI Appendix, Table S1) (2).
However, to sustain kerta masa, upstream farmers must give up
their advantage in irrigation control. How, then, did it become
the norm in Bali, whereas tulak sumur is regarded as a rare and
problematic condition?

To find out, in prior research, we modeled the emergence
of cooperation in a simple game involving only two rice farm-
ers, one upstream from the other (2). We allow the upstream
farmer to have first claim on any water in the system. To simplify
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Fig. 1. (A) Location of study sites: six randomly selected rice-growing regions of Bali. Photosynthetic activity was analyzed using multispectral and
panchromatic satellite images to classify four stages of rice growth in the terraces, which appear as differently colored patches. (B) Image analysis of
rice growth (indicating synchronized irrigation schedules in the region of Gianyar). The four colors of the patches indicate the four stages: growing rice
(yellow), harvest (green), flooded (red), drained (blue). (C) Cumulative distribution of the patch sizes P(> s) for Gianyar (red circles) and for our model
results (blue squares). (Inset) All 13 observations at the six regions, indicating power-law behavior, with an exponent around α≈ 1. (D) Correlation functions
C(d) of the image (planting regions only) as a function of distance for Gianyar (red) and the model (blue). The slow decay (power law) indicates long-range
correlations, or “system-wide connectivity” of patches. (Inset) All 13 observations. See SI Appendix for details.

matters, suppose that the farmers must choose one of two pos-
sible dates, A or B, on which to plant their crops. We assume
that the water supply is adequate to accommodate the needs of
one farmer during any given period but is insufficient if both
decide to plant simultaneously. The maximum harvest is 1. Let
δ (0<δ< 1) give the crop loss due to reduced water inputs expe-
rienced by the downstream farmer if he plants at the same time
as the upstream farmer. However, harvests are also affected by
rice pests (3). If the farmers plant at different times, they will
harvest at different times. This schedule provides an opportu-
nity for rice pests to migrate between the fields. Let ρ (0<ρ< 1)
give the crop loss due to pest migration between the fields under
these conditions (for simplicity, we assume that there is no pest
damage if the crops are planted simultaneously).

If the upstream farmer is not very worried about damage from
pests, he will have little incentive to synchronize his irrigation
schedule with the downstream farmer. This situation results in a
mixed strategy (one player chooses A and the other chooses B),
corresponding to tulak sumur. The expected aggregate crop yield
for both farmers from the mixed strategy is 2− δ/2− ρ. When
ρ> δ/2, both farmers will obtain better harvests by cooperating
in a single irrigation strategy (either A or B). This agreement
holds because pest damage is borne by both farmers whereas
water damage impacts only the downstream farmer; thus aggre-

gate yields increase by coordinating when pest damage is at least
half as bad as water damage. In this case, corresponding to kerta
masa, it is in the individual interest of both farmers to cooperate
(formally, this is known as a coordinated equilibrium).

Thus, the threat of increased pest damage from downstream
neighbors provides an incentive for upstream farmers to syn-
chronize their irrigation schedules. We tested the salience of
this incentive in a survey of 150 farmers in 10 subaks, to whom
we posed the question, “Which is worse, pest damage or irriga-
tion water shortages?” In each subak, five farmers were selected
whose fields are located in the upstream part of their subak, five
more from the middle of the subak, and the last five from the
downstream area of the subak. The results showed that upstream
farmers worry more about pests, whereas downstream and mid-
dle farmers are more concerned with water shortages (Pearson
χ2 14.083, P < 0.001) (2).

Thus, in the two-player game, whether cooperation emerges
depends on the trade-off between pest damage ρ and water
shortages δ, both of which are fixed and known to the players
in advance. In reality, for any farmer, ρ depends on both the
intrinsic capacity of endemic pests to cause damage and whether
neighboring farmers choose to control the pests by synchronizing
irrigation. Similarly, δ depends on both the inflow of irrigation
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water into the subak and the scale at which groups of farmers syn-
chronize irrigation. Consequently, the pest–water trade-off for
each farmer varies depending on where his farm is located and
the outcome of the irrigation schedules chosen by his neighbors.
Whether both farmers choose to cooperate (synchronize irriga-
tion) depends on the magnitude of ρ and δ.

To explore how patterns of irrigation scheduling emerge from
this mutual dependence, we created an adaptive version of the
game in which farms are embedded on the sites of an L×L lat-
tice, with dimension L=100. Parameters a and b specify the
relative weights of pest and water stress, respectively, for the
entire lattice and are set in advance. The lattice represents a rice-
growing region such as shown in Fig. 1B.

This model proceeds through a process of trial-and-error
adaptation. Losses from water stress are calculated based on
the distribution of irrigation schedules for the entire lattice: The
fewer the farmers following a given schedule, the more water
they have to share. However, this reward for asynchronous irri-
gation is balanced by the need to reduce losses from pests,
which depends on the fraction of neighboring farmers (fp) within
a given radius (r) that synchronize their irrigation schedules.
When pest damage is at least half as bad as water damage, does
cooperation spread and do aggregate harvest yields increase?

The model is initialized with random irrigation patterns for
all sites at t =0, when every farmer i chooses one of four pos-
sible irrigation schedules Ci with probability 1/4. At the end of
a time step (representing one simulated irrigation cycle), each
farmer compares his harvest with those of his closest neigh-
bors, and uses this information to choose his irrigation schedule
for the next cycle (Fig. 2). Because the farmers do not know ρ
and δ in advance, they must guess. Anticipating future pest out-
breaks or water shortages is challenging, and the actual decision-
making process in subaks typically involves lengthy discussions
(3, 4). Irrigation flows along the tiny canals that connect adja-
cent fields are also complex, involving bargains similar to the
game described above. We do not attempt to replicate this level
of complexity in the model. Instead, we implement very simple
strategies to discover whether they are sufficient to enable suc-
cessful adaptation (Fig. 2). Once the decision rule and the back-
ground pest and water levels are determined, the model proceeds
in the following steps:

i) Assume we are at the beginning of time step t +1. Calcu-
late the rice harvest for each individual farmer i by debiting
his losses from pest damage and water stress, according to
H i(t+1)=H0 − a/0.1 + f ip (t)− b f iw (t), where H0 is a con-

Fig. 2. Update rule for farmer i. Colors denote irrigation schedules. For
example, green might signify planting in January, and blue might signify
planting in March. At time t + 1, farmer i compares his harvest with those
of his four closest neighbors at time t. Because the red schedule produced
the best harvests, he adopts it for the next cycle. This update corresponds to
step iii in the model.

stant representing the initial harvest before loss. Here f ip (t)
denotes the fraction of neighbors of farmer i within a radius
r who share the same cropping pattern as i at the previous
time step t , which reduces local pest damage, and f iw (t) is
the fraction of all lattice sites that have the same cropping
pattern as i . The number 0.1 in the formula is to ensure that
Hi is positive. The parameters a and b specify the relative
weights of the pest loss and water stress, respectively. We set
H0 =5 and r =2 (lattice units) for all simulations. Details
are provided in SI Appendix.

ii) Pick one specific farmer i randomly.
iii) Farmer i compares his harvest H i(t +1) with the harvests of

his four nearest neighbors and copies the irrigation schedule
of one or more neighbors according to the decision rule (Fig.
2). In the simplest case, it is the neighbor who had the best
harvest in the previous irrigation cycle j : Ci(t + 1)=Cj (t)
(Fig. 3). For an explanation of the reasons for the difference
between these decision rules and the game, see SI Appendix,
Game and Lattice Models.

iv) Pick next farmer until all are updated (synchronously).
v) For a small fraction of lattice sites, the irrigation sched-

ules are randomly updated, to simulate empirically observed
nonconformity (see SI Appendix).

vi) Perform the next time step.
vii) Repeat for more time steps until harvests converge to

maximum.

Model Results
The model evolves through a process of trial-and-error adapta-
tion by the farmers. At first, in the initial random state (t =0),
the correlation between farms is close to zero (Fig. 3A). What
happens next depends on the ecological parameters pests (a)
and water stress (b), and on the decision rule followed by
the farmers. There are three trivial attractors (“phases”) (SI
Appendix, Fig. S4): (i) If water stress is negligible (b� 1) even-
tually all farms adopt the same irrigation schedule to control
pests, resulting in a single uniform patch that spans the entire
lattice. (ii) If b> 20a , water stress dominates, and many small
patches appear; this increases the variance of irrigation sched-
ules, reducing water stress, but allows pests to migrate between
adjacent patches. (iii) For b< 20a , after a very long transient
phase (thousands of cycles), a quadrant state is reached that sep-
arates the lattice into four quadrants with the same irrigation
schedules.

The fourth attractor, which is nontrivial, emerges at the
phase transition, exactly at the boundary where the water and
pest stress phases equalize. Correlation lengths increase as the
cycles of planting and harvest progress, and farms coalesce into
small, irregularly sized patches with identical irrigation sched-
ules. Patches form very quickly, as seen in Fig. 3A, and soon
become large enough to dramatically reduce pest damage. Uni-
formly short correlation distances indicate that the patches are
functionally independent: Each patch discovers its own solution
to the pest–water trade-off. Rice harvests improve rapidly within
the first time steps, and correlations between farms increase.
However, there is still some variation in harvests, so farms on
the borders of the patches continue to experiment with differ-
ent irrigation schedules. Adaptation ceases when no farm can
improve its harvest by changing its irrigation schedule. The geo-
graphic scale at which the pest–water trade-off is solved shifts
from many small independent patches (small correlation length)
to the entire lattice by (t =10), equivalent to 5 y of double crop-
ping. Subsequently there is little change: At t =400, the situation
is very similar to t =10. In Fig. 3B, we study the average har-
vest H =1/L2 ∑L2

i=1 H
i as a function of simulation time steps

(blue line, maximum strategy). We see that the maximum of H is
reached very soon.
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Fig. 3. (A) Evolution of the irrigation schedules from an initial random
configuration at t = 0 to t = 10, whereupon patch sizes become power-law
distributed. At t = 400, the irrigation patterns have changed very little and
approach a long-lived steady state distribution (see SI Appendix). (B) Effect
of decision rules on harvests. For the “maximum” rule (step iii, where farm-
ers choose the best harvest in their neighborhood), average harvests rapidly
increase as patch distributions shift to the power-law distribution (blue line).
A similar rapid increase occurs for the “majority” update strategy, where
farmers copy the schedule of the majority (red). To copy a random neigh-
bor’s irrigation schedule is the “random” strategy (pink) that leads to infe-
rior harvests. Extending this logic, when farmers update according to the
minority of their neighbors, harvests do not improve. The maximum possible
harvest is H = H0 = 5 in the absence of pest or water stress. In the simulation
shown, both pest and water stress are strongly present, a = 0.5 and b = 9.6.

In summary, cooperation quickly spans the entire lattice.
Harvests tend to increase and equalize, approaching Pareto
optimality at the phase transition where both the frequency dis-
tribution of synchronized irrigation patches and the correlations
between them become power laws. (Pareto optimality is a state
of resource allocation from which it is impossible to reallocate so
as to make any individual better off without making at least one
individual worse off.) In the phase diagram for the lattice model,
this balance occurs in a narrow region at the boundary between
the regions dominated by pests and water (SI Appendix, Fig. S4).
The resulting distribution of colored patches (synchronized irri-
gation schedules) on the lattice is readily comparable with the
satellite imagery.

Comparison with Satellite Imagery
We analyzed patch distributions in six rice-growing regions, ran-
domly selected on the basis of absence of cloud cover (Fig.
1A). Fig. 1B shows one of these regions (Gianyar) on a partic-
ular observation day. Four different phases of rice growth cor-
responding to the irrigation schedules are clearly visible in the
multispectral and panchromatic satellite images: growing rice,
harvest, flooded, and drained. Image analysis is based on mea-
suring photosynthetic activity; see Methods and SI Appendix. Fig.
1C shows the cumulative distribution function (red circles) of the
patch sizes s , as they are found in Fig. 1B (Gianyar region). It
shows a power-law distribution P(> s)∝ s−α with a tail expo-
nent of α=0.93(0.07); the SE is given in brackets. The patch
size distributions for all other regions at all observation times are
shown in Fig. 1C, Inset; corresponding exponents are fitted from
the data with a standard maximum likelihood estimator (see SI
Appendix) and are listed in SI Appendix, Table S2.

The cumulative patch size distribution is visible in the power
law (Fig. 1C). The model results (blue squares) for the phase
transition (when b/a ≈ 20 at t =400) closely matches the empir-

ical data (red circles), and would be very similar at t =10. Sim-
ilar agreement occurs in the correlation function C (d). For the
appropriately scaled model results (to match the length scales in
the satellite images and the model dimension), we find very simi-
lar functional dependence of the correlation function in Fig. 1D.
Both data and model show an approximate power-law decay in
the correlation function.

Correlation functions C (d) provide a second measure of the
scale of cooperation among farmers. In Fig. 1D (red) for Gian-
yar, we see that correlation functions decay slowly with distance:
The closer two patches are, the more likely they are to follow the
same irrigation schedule, indicating that all patches are linked.
Correlation functions decline as a power law. Thus, the state of
each patch affects all of the others, and the Gianyar rice ter-
races form an integrated (globally coupled) system; Fig. 1D, Inset
shows that this is true for all regions and observations. To quan-
tify the typical correlation length, we define it as the variance
of the correlation function; see Eq. 2 in Methods. For Gian-
yar, the correlation length turns out to be ε=373 m, spanning
all patches. The results for the other regions are found in SI
Appendix, Table S2.

We performed a systematic study of the dependence of the
average harvests H , the power-law exponents α, and the correla-
tion lengths ε on the parameters a and b. The results are shown
in Fig. 4. Here, we observe the emergence of critical behavior
at a region where water stress and pest stress balance as adapta-
tion progresses in the simulation. This region is highlighted with
white lines in Fig. 4B. A comparison with the observed data for
the power-law exponent α in SI Appendix, Table S2 suggests that
model results from this parameter region are compatible with the
empirical data. At the critical region, the entire system of farms
becomes correlated as global control emerges from simple local
interactions between farmers.

Discussion
We suggest that the dynamics captured in the lattice model
described above show that self-organized criticality (SOC) can
emerge from an adaptive process. The evidence that this find-
ing tells us something about the Balinese subak system is based
on the remarkable similarity of the distributions of patch sizes
and correlation distances in the satellite imagery and the model.
However, power-law distributions can occur for many reasons.
For example, they often occur in vegetation patches in dryland
ecosystems under stress (5–8). However, vegetation patches in
natural ecosystems are functionally similar, differing only in size.
For the vegetation patches that make up the mosaics of the rice
terraces, size matters, but so does the age of the rice crop in
each patch, which depends on the irrigation schedules selected
by the farmers. Any explanation for the observed power-law dis-
tribution of patches in the rice terraces needs to account for
this functional coupling of irrigation schedules and ecosystem
dynamics. Our adaptive SOC model tests the hypothesis that the
observed mosaic patterns might arise from the farmers’ efforts
to optimize the pest–water trade-off. The model shows that, if
the adaptive dynamics are driven by the pest–water trade-off,
there exist critical points where the power-law distribution is the
attractor. Because approximate Pareto optimality emerges at this
point, where the pest–water trade-off is optimized at all scales,
the model also suggests an explanation for the historical per-
sistence of this attractor. For these reasons, we suggest that the
emergence of power-law mosaics is not a purely biological phe-
nomenon but is the outcome of ongoing coupled human–natural
dynamical interactions. Two further assumptions of the model
can be evaluated with historical data.

First, the model assumes that subaks actively cooperate to
minimize losses due to pests and water shortages by synchro-
nizing their irrigation schedules. This assumption can be eval-
uated in light of historical evidence. From the ninth to the 14th
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A

B

C

Fig. 4. Effects of pest and water stress: model results as a function of
parameters a (pests) and b (water). (A) Average harvests. The maximum
possible harvest H0 occurs when a = b = 0. (B) Power-law exponent α of
the cumulative patch size distribution. The parameter region that matches
the observed slopes from the satellite imagery (SI Appendix, Table S2) is
indicated by the white line. (C) Correlation length ε. The parameter region
that matches the observed slopes from the satellite imagery (SI Appendix,
Table S2) is found around the line where b/a≈ 20, which is indicated with
the white line. Further computations show the same critical behavior at
b/a≈ 14 when m = 0.2, or at b/a≈ 24 for m = 0.05 (see SI Appendix, Fig.
S2). Thus, the emergence of critical behavior does not depend simply on a
and b but also on the constant m in the denominator of pest stress. In con-
clusion, taking results from exponents and correlation lengths, the param-
eter region that is compatible with observations is b/a≈ 20. Simulations
were performed with L = 100, r = 2, f = 0.05, and N = 4.

centuries AD, numerous royal inscriptions encouraged villagers
to construct irrigation systems, and left water management in
their hands (9). Because of Bali’s steep volcanic topography, “the
spatial distribution of Balinese irrigation canals, which by their
nature cross community boundaries, made it impossible for irri-
gation to be handled at a purely community level” (10). Later
on, both Balinese and European manuscripts describe coopera-

tive management by the subaks. Soon after the final conquest of
Bali by the Dutch in 1908, the colonial irrigation engineer tasked
with surveying Balinese irrigation wrote “if due to lack of water
not all areas can get water, then they create a turn-taking which
is decided upon during the monthly meetings” (11).

Second, the model predicts that rice yields will be optimized
by irrigation schedules that balance the pest–water trade-off for
multisubak groups. This prediction was inadvertently tested by
the introduction of Green Revolution agriculture to Bali in the
1970s. At that time, the subaks were required to give up the right
to set their own irrigation schedules. Instead, each farmer was
instructed to cultivate Green Revolution rice as often as possible,
resulting in unsynchronized planting schedules. By 1977, 70% of
southern Balinese rice terraces were planted with Green Revo-
lution rice. At first, rice harvests increased. Within 2 y, however,
Balinese agricultural and irrigation workers reported “chaos in
water scheduling” and “explosions of pest populations” (ref. 3,
p. 114). In 1985, the Department of Public Works in Tabanan
(the largest rice-growing regency in Bali) reported that “the fol-
lowing factors caused the explosion of pests and diseases: 1. In
areas with sufficient irrigation water, farmers are now plant-
ing continuously throughout the year. 2. In areas with insuffi-
cient water, farmers are planting without a coordinated sched-
ule. In other words, the farmers/subaks have ceased to follow
the centuries-old cyclical cropping patterns” (12). It was only
when farmers spontaneously returned to synchronized plant-
ing schemes that harvests began to recover, a point subse
quently acknowledged by the final evaluation team from the
Asian Development Bank (13).

Why was the functional significance of multisubak coopera-
tion not apparent to the Green Revolution planners? The model
suggests a possible explanation. Power-law distributions of dry-
land vegetation are comparatively obvious because the patches
differ only in size. However, adaptive management by the sub-
aks creates differentiated patches of varying size. The distinc-
tion is significant, not only because similar versus differenti-
ated patches occur for different reasons but also because it is
harder for observers to detect the connectivity of differentiated
patches. Perhaps partly for this reason, until now theoretical
models of coupled human–natural systems like rice terraces have
not anticipated or accounted for the emergence of global-scale
connectivity, focusing instead on local interactions. The model
also suggests an explanation for the widespread occurrence of
fragile kilometers-long irrigation systems linking multiple sub-
aks in the mountains of Bali. If management by the subaks were
purely local, leaving downstream subaks at the mercy of their
upstream neighbors, these irrigation works would be pointless,
and the total area of terraced fields on the island could never
have reached its historic extent (14).

In retrospect, it is not surprising that the concept of SOC
is relevant to the emergence of cooperation in human inter-
actions with ecosystem processes. Models of SOC were devel-
oped to understand how small-scale local interactions can transit
to integrated global connectivity, popularized by the compelling
sandpile example (15). These models often behave as if oper-
ating exactly at a phase transition. There, the systems become
“critical,” which means that correlations become long-range, and
effectively span the entire system, even though interactions only
happen at the local nearest-neighbor level.

In the subak lattice model, realistic configurations of patches
appear after just a few simulation steps. At the same time,
harvests approach Pareto optimality (if any farmer changes his
irrigation pattern, his rice harvests or those of other farm-
ers will decline). The total harvest of all farms is also maxi-
mized. The subak model does not evolve to full alignment of
behavior (except when b=0), which would minimize pest losses
but maximize water stress. Instead, at the critical point, the
adaptive update process of farmers continues to a point where
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correlations span the entire system. For this reason, we call the
model dynamics “adaptive SOC.”

We conclude with the question of whether these results are
likely to be unusual, perhaps even unique to Bali. The scope of
the model is limited by the physical geography of Bali. The four
crater lakes store rainfall that feeds the groundwater system, but
they have no river outlets. On the steep porous volcanic slopes,
rivers recharge very quickly. Irrigation systems consist of one to
six closely spaced weirs and springs that provide water for one or
more subaks. These local irrigation systems are functionally inde-
pendent: Although they remove most or all of the flow, a kilome-
ter or two downstream, it will be replenished from groundwa-
ter flows. Our model captures the adaptive process at this scale,
where local groups of farmers meet face to face to solve the pest–
water trade-off. The concept of emergent global-scale connectiv-
ity in our model, which we borrow from physics, does not refer to
all of the subaks on a river but to these smaller functionally inde-
pendent groups of subaks, such as those shown in Fig. 1B and SI
Appendix, Figs. S3 and S6–S17. This configuration of water dis-
tribution contrasts with a typical desert river, where the effects
of upstream irrigation may be felt far downstream.

If several subaks share water resources, their elected lead-
ers meet to negotiate irrigation schedules. Although this higher-
level coordination between subaks is not explicitly included in the
model, the decision-making process is the same: a trial-and-error
adaptation to reduce pest and water stress. These meetings take
place in regional water temples and make use of a sophisticated
permutational calendar to plan and implement staggered irriga-
tion schedules (14, 16). These cultural innovations undoubtedly
facilitate adaptation to changing pest–water dynamics. However,
the model does not require calendars or water temples; instead,
it helps to clarify the functional significance of these social con-
structs for sustaining approximate Pareto optimality. Our model
shows that the simple pest–water trade-off triggers continuous
transitions that turn adaptive agents on a two-dimensional lattice
into a coevolving system capable of solving the pest–water trade-
off by means of local decision-making. Unlike Gunderson and
Holling’s well-known model of adaptive cycles (17), here increas-
ing connectivity does not cause collapse but stabilizes at a scale-
free distribution of functionally varied patches. This is quite a
general result that may be common in coupled human–natural
systems. In any anthropogenic landscape, correlations between
patches will provide some information about the scale of human
management (see SI Appendix for code). If Bali’s subaks are not

unique, and adaptive SOC occurs in the management of the com-
mons elsewhere, it should be readily detectible from correlated
patch distributions.

Methods
Correlation Functions. We use a definition of correlation function C(d) that
is based on the mutual information between the cropping pattern X at site
i and the cropping pattern Y at site j, where the distance from site i to j
is d. The mutual information measures how much the knowledge of the
cropping pattern at one site reduces the uncertainty on the knowledge of
the cropping pattern at the other site. It is defined as

C(d) =
1

N

4∑
X=1

4∑
Y=1

Pd(X, Y) log2
Pd(X, Y)

Pd(X)Pd(Y)
, [1]

where Pd(X,Y) is the probability of cropping patterns X and Y occurring at
sites that are a distance d apart. Note that X and Y take values from 1 to
4 with ‘1 = green’, ‘2 = red’, ‘3 = blue’ and ‘4 = yellow’. Operationally, the
joint probability Pd(X, Y) is determined by taking the relative frequency of
the cropping patterns X and Y against all possible combinations of cropping
patterns between sites at a relative distance d. Note that the site here refers
either to a pixel in the satellite image or to a lattice site for the model. The
marginal probability of cropping pattern X (or Y) is Pd(X) [or Pd(Y)].N is the
normalization constant. It is equal to the Shannon entropy of the cropping
pattern X, i.e., N =−

∑4
X=1 P0(X) log2P0(X). It ensures that the correlation

is normalized, so that C(d = 0) = 1. We use this definition for the correlation
function because it is applicable to random variables in symbolic form. The
standard correlation function in two dimensions is inappropriate, as it needs
random variables in numeric form. However, these two definitions for the
correlation functions are closely related if the joint probability distribution
is Gaussian (18).

Correlation Length. The correlation length ε is defined as the variance (sec-
ond moment) of the correlation function from Eq. 1,

ε =

(∑
d d2C(d)∑

d C(d)

) 1
2
. [2]
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